ANGLE ROTARY SENSOR

Hall effect absolute single turn encoder with shaft

CHARACTERISTICS

ADVANTAGES

Angle Range: 0° to 360°
Absolute measure
Redundant sensors
Linearity up to ±0.6°
Plasting Housing

Shaft in AISI303 steel

High protection level IP67

HALL Effect technology

High life time

High accuracy at economic prices

Compact dimensions

Simple adjustment with elongates holes

Many parameters configurable by CANopen (Offset, Counting direction, angle range 0°-360° or ± 180 °)

High protection level

Shock/vibration resistant

Redundancy output

Reverse polarity protection

Cost

CANopen output

Functional safety

Directive 2011/65/EU

EU conformity

ANGLE ROTARY SENSOR

Hall effect absolute single turn encoder with shaft

PRODUCT DESCRIPTION

The RTA100 is a magnetic low-cost angle sensor used for very precise angle measurements and it is based on the contactless Hall measurement principle.

RTA100 is extremely reliable and ensures a long service life. It has excellent capabilities against mechanical shock and vibration.

The housing is made of a special high-grade temperature resistant plastic material. RTA100 is designed for applications like Harvester, Fork-lift, Operating table and Hydraulic pump.



а	Counting direction
1 •	= CH1 & CH2 = CW
2 -	= CH1 & CH2 = CCW
3 -	= CH1 = CW, CH2 = CCW *
4	= CH1 = CCW, CH2 = CW

b	Power supply
2	= 9 30 V DC

C		Angle degree
360	4	= 360°

•

1

2

Type of magnet

= Shaft A*

= Shaft B

d		Output
6	4	= CANopen redundant*
28	4	= CANopen SIL2-Pld

е		Type of connection
1	•	= Male connector M12x5, PUR cable 30cm
13	4	= Deutsch DT04-6P, PUR cable 30cm
20	4	= Deutsch DT04-4P, PUR cable 30cm

е	Type of connection	
1	= Male connector M12x5, PUR cable 30cm	
13	= Deutsch DT04-6P, PUR cable 30cm	
20	= Deutsch DT04-4P, PUR cable 30cm	

^{*} TSM standard

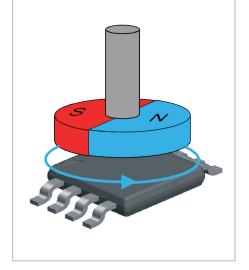
ANGLE ROTARY SENSOR

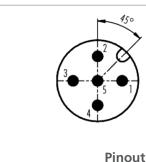
Hall effect absolute single turn encoder with shaft

TECHNICAL SPECIFICATION

Measuring range	0 360°
Resolution	0.1° (settable 1° - 0.1° - 0.01°)
Linearity	±0.6°
Housing	Plastic (Blue)
Protection	IP67
Temperature drift	100 ppm/K
Temperature range	-40°C +85°C [-40°F+185°F]
Speed rotation	< 120 rpm
Max shaft rotation	radial 2.5 Kg and tensil 4.5 Kg
Torque	0.05 Nm [starting 0.25 Nm]
Weight	approx. 42 g [1.48 oz]
Shock resistance	acc. to CEI EN 60068-2-27
Vibration resistance	acc. to CEI EN 60068-2-6:2009

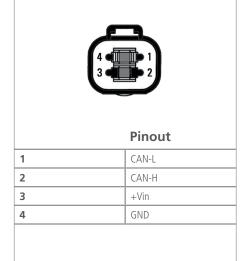
ELECTRICAL CHARACTERISTICS


Power supply	9 30 V DC
Interface	CANopen
Profile conformity	CiA DS301
Electromagnetic compatibility	acc. to EN 61326-3-1(2017), EN 61326-1(2013) The electromagnetic environment envisaged for the use of the test equipment is: industrial electromagnetic environment
CE compliant	acc. to EMC guideline 2014/30/EU RoHS guideline 2011/65/EU

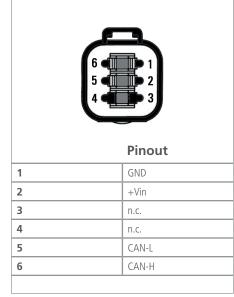

OPERATING PRINCIPLE -

HALL effect

the production of a potential difference across an electrical conductor when a magnetic field is applied in a direction perpendicular to that of the flow of current.



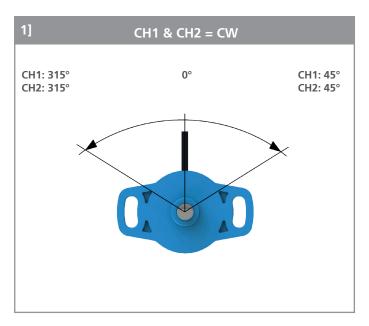
ELECTRICAL CONNECTION M12 X 5 PINS

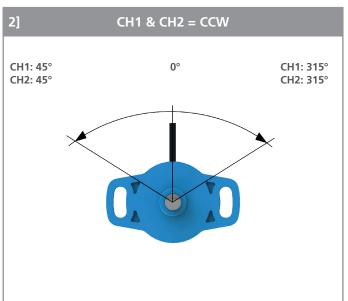


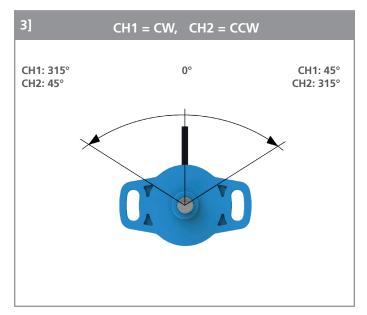
	Pinout
1	GND
2	+Vin
3	CAN-GND
4	CAN-H
5	CAN-L

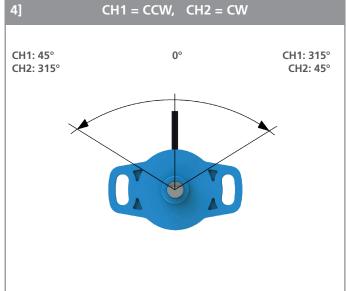
ELECTRICAL CONNECTION DEUTSCH DT04-4P

ELECTRICAL CONNECTION DEUTSCH DT04-6P

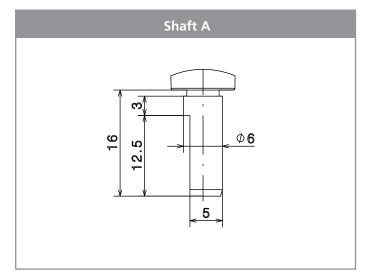

ANGLE ROTARY SENSOR

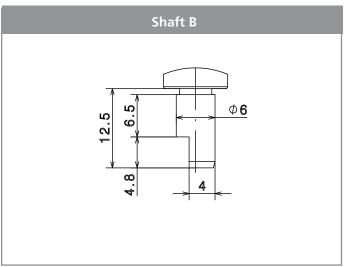

Hall effect absolute single turn encoder with shaft

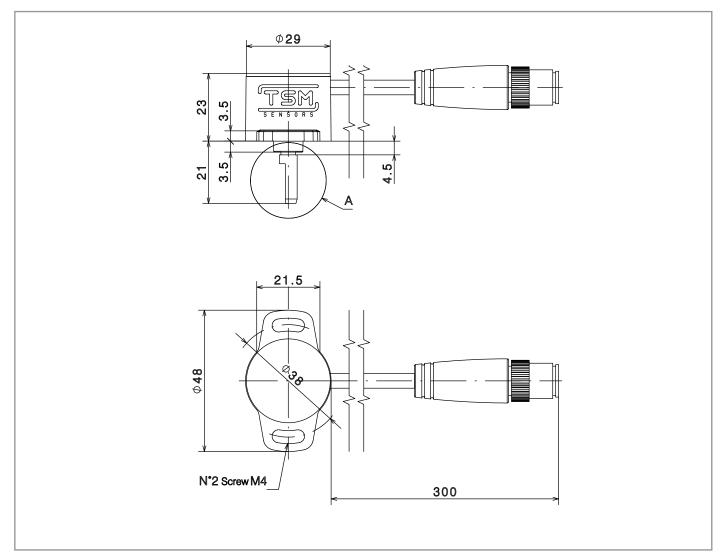




COUNTING DIRECTION (SHAFT VIEW)






ANGLE ROTARY SENSOR

Hall effect absolute single turn encoder with shaft

